Mechanical stabilization of desiccated vegetative tissues of the resurrection grass Eragrostis nindensis: does a TIP 3;1 and/or compartmentalization of subcellular components and metabolites play a role?
نویسندگان
چکیده
During dehydration, numerous metabolites accumulate in vegetative desiccation-tolerant tissues. This is thought to be important in mechanically stabilizing the cells and membranes in the desiccated state. Non-aqueous fractionation of desiccated leaf tissues of the resurrection grass Eragrostis nindensis (Ficalho and Hiern) provided an insight into the subcellular localization of the metabolites (because of the assumptions necessary in the calculations the data must be treated with some caution). During dehydration of the desiccant-tolerant leaves, abundant small vacuoles are formed in the bundle sheath cells, while cell wall folding occurs in the thin-walled mesophyll and epidermal cells, leading to a considerable reduction in the cross-sectional area of these cells. During dehydration, proline, protein, and sucrose accumulate in similar proportions in the small vacuoles in the bundle sheath cells. In the mesophyll cells high amounts of sucrose accumulate in the cytoplasm, with proline and proteins being present in both the cytoplasm and the large central vacuole. In addition to the replacement of water by compatible solutes, high permeability of membranes to water may be critical to reduce the mechanical strain associated with the influx of water on rehydration. The immunolocalization of a possible TIP 3;1 to the small vacuoles in the bundle sheath cells may be important in both increased water permeability as well as in the mobilization of solutes from the small vacuoles on rehydration. This is the first report of a possible TIP 3;1 in vegetative tissues (previously only reported in orthodox seeds).
منابع مشابه
The Signature of Seeds in Resurrection Plants: A Molecular and Physiological Comparison of Desiccation Tolerance in Seeds and Vegetative Tissues1
SYNOPSIS. Desiccation-tolerance in vegetative tissues of angiosperms has a polyphyletic origin and could be due to 1) appropriation of the seed-specific program of gene expression that protects orthodox seeds against desiccation, and/or 2) a sustainable version of the abiotic stress response. We tested these hypotheses by comparing molecular and physiological data from the development of orthod...
متن کاملThe signature of seeds in resurrection plants: a molecular and physiological comparison of desiccation tolerance in seeds and vegetative tissues.
Desiccation-tolerance in vegetative tissues of angiosperms has a polyphyletic origin and could be due to 1) appropriation of the seed-specific program of gene expression that protects orthodox seeds against desiccation, and/or 2) a sustainable version of the abiotic stress response. We tested these hypotheses by comparing molecular and physiological data from the development of orthodox seeds, ...
متن کاملResurrection Plants and the Secrets of Eternal Leaf
Most higher plants possess a phase in their life cycle in which tissues can survive desiccation. However, this is restricted to specialized tissues such as seeds and pollen. Resurrection plants are remarkable in that they can tolerate almost complete water loss in their vegetative tissues. The desiccated plant can remain alive in the dried state for several years. However, upon watering the pla...
متن کاملInvestigation of phenological stages and pollutants’ type on the efficiency of vegetative buffer strips
Non-point source pollution is considered as a serious issue especially in the field of eutrophication for surface waters. Vegetative buffer strips include a specific plant being passed by flow before entering the waterways, so it causes to reduce runoff volume, deposited pesticides and other pollutants of the flow through infiltration, absorption and sediment deposition. The present study has b...
متن کاملInsights into the cellular mechanisms of desiccation tolerance among angiosperm resurrection plant species
Water is a major limiting factor in growth and reproduction in plants. The ability of tissues to survive desiccation is commonly found in seeds or pollen but rarely present in vegetative tissues. Resurrection plants are remarkable as they can tolerate almost complete water loss from their vegetative tissues such as leaves and roots. Metabolism is shut down as they dehydrate and the plants becom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 55 397 شماره
صفحات -
تاریخ انتشار 2004